
Cindy Bui 

3D Audio 

Final Project Paper 

I. Abstract 

Graphics processing units (GPUs) are computational accelerators. They were originally 

designed to handle real-time computer graphics processing but have been adapted to be used for 

high performance computing (HPC) in scientific research, machine learning, artificial 

intelligence, and several other fields. This adaptation of GPUs is known as general purpose 

computing on graphics processing units (GPGPU). The HPC community has furthered the 

literature on the usage of GPGPU for offline processing, but recent research has been trying to 

expand GPGPU into real-time processing, known as online processing. One facet of 3D audio 

that can benefit from the GPU is HRTFs and binaural audio. Traditionally, HRIRs needed to be 

very short, around 128 to 512 samples. Research has also been done on converting the HRIR FIR 

filters into IIR filters to reduce computational complexity. With GPUs, the reduction in 

computational complexity is no longer necessary. Instead, research can disregard the bottleneck 

of computational complexity and focus on ways to enhance user experience and perception. One 

of the major topics on HRTFs and perception is HRTF interpolation. This project and paper will 

be an application of GPGPU for HRTF interpolation, distance scaling, and a switching method. 

II. Background and Motivation 

Measuring a person’s HRTFs is an incredibly tedious process. The speakers need to be 

setup very precisely, and the person needs to be absolutely still if the HRTFs are of a person and 

not a dummy head. The more positions there are, the better the resolution of the dataset. 

However, all datasets will have some sort of fixed resolution of HRTFs in terms of azimuth and 

elevation. This causes some artifacts in the time domain, especially with fast moving sound 

objects moving along a specific path. Typically, this is heard as an audible click or switch. 



Research has already been done on HRTF interpolation methods, but these methods are limited 

to the computation power of the computers that they’re done on.  

As a solution to this, I wanted to implement an HRTF interpolation algorithm for GPUs 

that does not include any sort of truncation or reduction in quality. 

III. Description - Theory 

This project is an implementation of Jose Belloch’s paper, “Headphone-Based Virtual 

Spatialization of Sound with a GPU Accelerator.” His methodology purposefully selects 

techniques that do not decrease the length or the coefficients of the HRIRs. He performed a 

perceptual study and evaluation on switching and interpolation techniques. 

A. Switching Algorithm 

For switching techniques, he tried five different types of vectors and did a subjective test 

with a sample size of twenty people. He asked his participants to rate the different techniques in 

order of perceptual smoothness. The most preferred switching technique was a Fourier function, 

with a ramp function following closely after. This project uses the ramp function, which is a 

linear crossfade. Objectively, these two techniques have the lowest percentage of out of band 

energy. The equation below is for the crossfade function where ∗ denotes convolution, ⊗ 

denotes elementwise multiplication, and ⊕ denotes elementwise addition. 

𝐲𝐢 = ((𝐡(θold, ϕold, rold) ∗ 𝐱i) ⊗ 𝐟) ⊕ ((𝐡(θnew, ϕnew, rnew) ∗ 𝐱𝐢) ⊗ 𝐠) 

The ramp technique is where 𝐟[n] =  1 −
n

N−1
 and 𝐠[n] =

n

N−1
. 

 

B. Interpolation Algorithm 

𝐟[n] 𝐠[n] 



In terms of interpolation techniques, he purposefully chose one that did not reduce the 

length or the HRIR coefficients in any shape or form. This technique was based off previous 

rational HRTF interpolation approaches.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4 HRTF database locations 

Want this interpolated position 

ℎ(𝜃1, 𝜙1) 

ℎ(𝜃3, 𝜙2) ℎ(𝜃4, 𝜙2) 

ℎ(𝜃2, 𝜙1) 

𝜔𝐴 𝜔𝐵  

𝜔𝐶  𝜔𝐷  

𝜔𝐹  

𝜔𝐸  



For any given virtual HRTF position, up to four sampled HRTFs can be used to create it, 

as shown by the figure above. The end result will be the sum of the input convolved with all four 

sources, however the sources need to be scaled according to how close the source is to each of 

them. 

𝛚𝐀 =
θs−θ1

Δθ
      𝛚𝐁 =

θ2−θS

Δθ
 

𝛚𝐂 =
θs−θ3

Δθ
  𝛚𝐃 =

θ4−θS

Δθ
 

𝛚𝐄 =  
ϕS−ϕ1

Δϕ
    𝛚𝐅 =  

ϕ2−ϕS

Δϕ
 

Y(θ𝑠, ϕ𝑠) = ωFωBY(θ1, ϕ1) 

+ωFωAY(θ2, ϕ1) 

+ωEωDY(θ3, ϕ2) 

+ωEωCY(θ4, ϕ2)  

C. Distance Virtualization Algorithm 

For distance scaling, Belloch also gives an equation for a complex vector as a function of 

𝑟. 

𝐑(r) =  
eα

1 +  
fs

c ⋅ (r − r0)2
 

where α =  
−j2π

fs
c

(r−r0)k

N
 

and k ∈ ℤ ∈ [0, N) 

When 𝑟 is 0, the magnitude spectrum is an identity function. As 𝑟 increases, the 

magnitude will scale down, but the phase response will begin to increase in negative slope, 

causing a constant group delay, which manifests as a time domain delay. 

IV. Description – Coding and Technical 



This project is named Jefferson in honor of a cartoon character created by a 3D media 

artist. It uses OpenGL to create a 3D interactive visualization of Jefferson and a sound source. 

The sound source can be moved with six degrees of freedom, and the audio changes accordingly. 

This project is written in C and C++. 

A. Tools 

OpenGL – short for Open Graphics Library. It is an API/library in several programming 

languages to draw 2D and 3D images. It’s portable and it’s implemented primarily in 

each computer’s hardware. 

ASSIMP – Acronym for Open Asset Import Library. It “is a portable Open Source 

library to import various well known 3D model formats in a uniform manner.” This was 

used to import an FBX file into OpenGL. 

 Documentation: http://www.assimp.org 

PortAudio – C/C++ library to play audio in real-time. 

Libsndfile – C/C++ library to import wave files. 

CUDA – acronym for Compute Unified Device Architecture. It’s “a parallel computing 

platform and programming model developed by NVIDIA for general computing on 

graphical processing units (GPUs)”. It is a proprietary but free API in several different 

programming languages to speak directly to NVIDIA hardware and utilize parallel 

processing. 

General knowledge: https://developer.nvidia.com/cuda-zone 

Download link: https://developer.nvidia.com/cuda-downloads 

Documentation: https://docs.nvidia.com/cuda/  

cuFFT – NVIDIA CUDA Fast Fourier Transform library.  

http://www.assimp.org/
http://www.assimp.org/
https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/cuda-downloads
https://docs.nvidia.com/cuda/


General knowledge: https://developer.nvidia.com/cufft.  

Documentation: https://docs.nvidia.com/cuda/cufft/index.html.  

FFTW – Acronym for the Fastest Fourier Transform in the West. This is a C++ library to 

perform Fourier transforms on the CPU. 

OpenMP – This is a library and SDK to do parallel processing on a CPU. The syntax 

looks like #pragma omp parallel for above a for loop. 

B. Program Flow 

When the program first starts up, there is a lot of preprocessing that needs to occur before 

the visualization can begin. This primarily has to deal with loading external files and libraries 

into the program. The most notable external files are the input source, an optional reverberation 

file, and the fbx file for Jefferson. Another important aspect of the preprocessing stage is to 

process the first two buffers of audio for each sound source. This is because the audio is double 

buffered in the program. When the callback starts running, the output is filled with the previous 

callback’s input after it has been processed. While not completely necessary, this allows extra 

room for the asynchronous GPU calls in case one of them takes longer than one callback 

function to compute. 

• Preprocessing: 

o Reading audio files 

▪ Read input file 

▪ Read reverb file 

• (optional) convolve input with reverb 

▪ Read all KEMAR HRIR files 

• Transfer HRIRs to the GPU 

• FFT all HRIRs into HRTFs 

o Preprocess the first two buffers of audio for each sound source 

o Initialize PortAudio and start audio 

o Initialing OpenGL 

▪ Initialize callbacks 

https://developer.nvidia.com/cufft
https://developer.nvidia.com/cufft
https://docs.nvidia.com/cuda/cufft/index.html


▪ Create VBO mesh of the floor 

▪ Initialize the lighting and material properties 

▪ Load the FBX model 

▪ Start graphics loop 

Real-time work flow

 
There is a single object that encapsulates all the data that gets passed back and forth 

between the OpenGL threads, PortAudio threads, and GPU threads. That object is of type 

DataTag, and it contains an array of sources. Currently, there is only one sound source. This 

infrastructure allows the number of sources to easily scale. Each source has several member 

variables and methods. The most important ones are float3 coordinates, void 

updateFromCartesian(), and void process(int blockNo).  

The graphics callbacks will update coordinates and call updateFromCartesian() 

to update the object’s azimuth and elevation values. Asynchronously, the PortAudio callback 



thread will copy the data from intermediate, play that out to the speakers, and then copy the 

newest buffer into x, call void process(int blockNo), and perform overlap save on any of 

the two buffers whose GPU processing has finished. This diagram below details how the GPU 

performs the interpolation, switching, and distance scaling algorithms.  

 

 

 

 

 

 

 

 

 

V. Conclusion and Future Work 

After implementing these algorithms for a GPU, I found that the worst-case scenario 

where sixteen convolutions were necessary resulted in a processing time of 0.5 ms on a GPU. 

The current implementation only has one sound source, but Belloch’s paper proved that it is 



possible to follow this algorithm for 240 moving sound sources. This code is also the only open 

source public repository that uses GPUs for real-time audio. 

As for future work, this project can be enhanced further for perceptual studies and 

objective benchmarking statistics. The code is currently in place to benchmark CPU algorithms 

and GPU algorithms with and without interpolating. Further processing and optimization can 

happen on both the GPU and CPU level. As of right now, each side of the tree in the last figure 

happens in the same GPU stream. The two trees run independently, but they run in series within 

each tree. This can be optimized so the eight elementwise multiplication operations happen in 

parallel with each other. For the CPU level, OpenMP can be used more extensively to launch 

separate CPU threads. These threads can even call their own GPU kernels. 

An interesting future study will be on the percentage of GPU usage for audio compared 

to graphics. The graphical interface here was chosen because it is the easiest way to visualize 3D 

space and to have a user interact with objects in said space. However, this graphical interface is 

also being processed on the same GPU. Desktop PCs have the capability for more than one GPU, 

so it’s possible to have one GPU for graphics and one GPU for audio processing. There was 

originally a vertex buffer array of a waveform of the input that passed through the source and 

towards Jefferson. As the sound source moved, the waveform would rotate and appear on the 

linear path between the source and listener. This VBO had to be removed since I noticed 

significant lag with the audio processing. A future iteration of this project can be on a desktop 

PC instead of a laptop. Alternatively, this can be turned into a VR experience where the user 

interaction happens using controllers. 

In terms of perceptual studies, this code can be modified to allow different types of 

HRTF databases. Another interesting experiment would be to observe what the largest resolution 



is for a smooth end user experience. The KEMAR HRTFs have an elevation resolution of 10 

degrees and azimuth resolution of 5 to 7 degrees, depending on the elevation. A subjective 

experiment can be done where HRTF points are taken out, causing the azimuth resolution to be 

every 10 degrees or 15 degrees to see if the real-time interpolation can make up for the lack of 

resolution. That study can show the minimum required number of HRTFs required for a smooth 

perceptual experience. More research can also go into perceptually evaluating different 

interpolation algorithms that don’t truncate or reduce the HRIR coefficients, because now there 

are devices that can operate on the computational complexity.  

Invoking another area of GPGPU and real-time audio processing, this project also has the 

potential to be integrated with ray-traced room reverberation to allow for a complete 6DoF 

experience. Belloch’s paper from 2013 set the gold standard for what a GPU can do with audio, 

and now it’s time to build on it and push the standard even higher. 

VI. References 

Belloch, J. A., Ferrer, M., Gonzalez, A., Martinez-Zaldivar, F. J., & Vidal, A. M. (2013). 

Headphone-based virtual spatialization of sound with a GPU accelerator. Journal of the 

Audio Engineering Society, 61 (7/8), 546-561. 

Keyrouz F., Diepold K., (Sept. 2006) “A Rational HRTF Interpolation Approach for Fast 

Synthesis of Moving Sound,” Digital Signal Processing Workshop, 12th - Signal 

Processing Education Workshop, 222–226. 

Keyrouz F., Diepold K., (2008). “A New HRTF Interpolation Approach for Fast Synthesis of 

Dynamic Environmental Interaction,” J. Audio Eng. Soc, vol. 56, 28–35 

 


